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▪ Next assignment notebook due  
01/04/2025 23:59 CET.

Logistics 3
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Constructivism 5

▪ Vision: 
▪ an indeterminate inverse problem 

from retinal images. 
▪ a “reconstruction” of the reality.  

▪ Something besides the retinal image is 
needed. 

▪ Likelihood Principle
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Generated optical 
illusions 
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Visual Anagrams: Generating Multi-View Optical Illusions with Diffusion Models, Geng et al.,  CVPR 2024 (Oral) 
https://dangeng.github.io/visual_anagrams/ 

https://dangeng.github.io/visual_anagrams/
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Generated optical 
illusions 

7

Visual Anagrams: Generating Multi-View Optical Illusions with Diffusion Models, Geng et al.,  CVPR 2024 (Oral) 
https://dangeng.github.io/visual_anagrams/ 

https://dangeng.github.io/visual_anagrams/
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Perception as modeling 
the environment 

8

▪ How and why?  
▪ The evolutionary utility of vision 

toward survival and reproduction, 
in the environment. 

▪ The observer is constructing a 
model of what environment situation 
might have produced the observed 
pattern of sensory stimulation 

▪ Visual illusions: the model is 
sometimes inaccurate. 

▪ Ambiguous figures: the model is 
sometimes not unique. 
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Feedback 9

Felleman & Van Essen (1991)
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Feedback 10

▪ Inner loop 
▪ top-down processing without external 

feedback from the world. 
▪ e.g. IEF (iterative error feedback, 2016), 

Attention, Feedback Networks (2017), 
diffusion.  

▪ Outer loop 
▪ with external feedback from the world 
▪ e.g. RMA (2021), RNA (2023), Most 

vision-action loop (e.g. Mid-level 2019), 
“Test-Time Training” (2020) 

▪ (All of the above are test-time feedback)

Inner

Outer
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Feedback 11

Human Pose Estimation with Iterative Error Feedback, J Carreira, P Agrawal, K Fragkiadaki, J Malik, CVPR 2016 
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Outer loop 
Feedback

13

▪ E.g. PID controller 

Wiki
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Feedback

14

RMA: Rapid Motor Adaptation for Legged Robots, Kumar et al., RSS 2021
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▪ Most vision-action systems 
▪ In active vision lecture
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Computational 
Active vision
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Data and 
Simulators
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Dataset

21

Imagenet (2012) [1]

UCF101 (2012) [2]

Caltech101 (2004) [3] Berkeley Segmentation (2001) [4]

[1] Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." CVPR 2009. 
[3] Fei-Fei, Li, et al. "Learning generative visual models from few training examples: An incremental bayesian 
approach tested on 101 object categories." Computer vision and Image understanding 106, 2007

[2] Soomro, Khurram, et al. "UCF101: A dataset of 101 human actions classes from videos in the wild." arXiv 2012 
[4] Martin, David, et al. "A database of human segmented natural images and its application to evaluating 
segmentation algorithms and measuring ecological statistics." In null, 2001. 
[5] Kahn, Gregory, et al. “Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot 
Navigation”, ICRA 2018



Dataset

Berkeley Segmentation (2001) [4]Caltech101 (2004) [3]

UCF101 (2012) [2]

Imagenet (2012) [1]

Perception for Active Agents

• Passive
[1] Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." CVPR 2009. 
[3] Fei-Fei, Li, et al. "Learning generative visual models from few training examples: An incremental bayesian 
approach tested on 101 object categories." Computer vision and Image understanding 106, 2007

[2] Soomro, Khurram, et al. "UCF101: A dataset of 101 human actions classes from videos in the wild." arXiv 2012 
[4] Martin, David, et al. "A database of human segmented natural images and its application to evaluating 
segmentation algorithms and measuring ecological statistics." In null, 2001. 
[5] Kahn, Gregory, et al. “Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot 
Navigation”, ICRA 2018

[5]
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Onboard Camera Agent
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Dataset

Berkeley Segmentation (2001) [4]Caltech101 (2004) [3]

UCF101 (2012) [2]

Imagenet (2012) [1]

Perception for Active Agents

• Passive
[1] Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." CVPR 2009. 
[3] Fei-Fei, Li, et al. "Learning generative visual models from few training examples: An incremental bayesian 
approach tested on 101 object categories." Computer vision and Image understanding 106, 2007

[2] Soomro, Khurram, et al. "UCF101: A dataset of 101 human actions classes from videos in the wild." arXiv 2012 
[4] Martin, David, et al. "A database of human segmented natural images and its application to evaluating 
segmentation algorithms and measuring ecological statistics." In null, 2001. 
[5] Kahn, Gregory, et al. “Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot 
Navigation”, ICRA 2018

[5]

23

Visual observation conditioned on agent’s actions.

Onboard Camera Agent

23



• Generalization

Perception for Active Agents

Learning in physical world

•Speed bounded to real time 
•Rare critical scenarios discounted 
•Space bounded

Video Games & Simulators

SYNTHIA [4]

AIRSIM [2]

THOR [7]

CARLA [3]

House3D [9]CMP [8]

VIZDOOM [1]

MINOS [5] ALVINN [6]

[1]  Kempka, Michał, et al. "Vizdoom: A doom-based ai research platform for visual reinforcement learning." CIG 2016. 
[2] Shah, Shital, et al. "Airsim: High-fidelity visual and physical simulation for autonomous vehicles.”, Field and service robotics 2018. 
[3] Dosovitskiy, Alexey, et al "CARLA: An open urban driving simulator." arXiv 2017 
[4] Ros, German, et al. "The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes." CVPR 2016.

[5] Savva, Manolis, et al. "MINOS: Multimodal indoor simulator for navigation in complex environments." arXiv 2017. 
[6] Pomerleau, Dean A. "Alvinn: An autonomous land vehicle in a neural network." Advances in neural information processing systems, 1989. 
[7] Zhu, Yuke, et al. "Target-driven visual navigation in indoor scenes using deep reinforcement learning." ICRA 2017. 
[8] Gupta, Saurabh, et al.”Cognitive Mapping and Planning for Visual Navigation”. CVPR 2017 
[9] Wu, Yi, et al. "Building generalizable agents with a realistic and rich 3d environment." arXiv 2018. 
[10] Pinto, Lerrel, et al. "Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours." ICRA 2016. 
[11] Gupta, Abhinav,et a;. "Robot learning in homes: Improving generalization and reducing dataset bias." In NIPS, 2018.

Dataset

Berkeley Segmentation (2001) [4]Caltech101 (2004) [3]

UCF101 (2012) [2]

Imagenet (2012) [1]

• Passive

2424
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Gibson Environment: Virtualizing Real Spaces

31

“Gibson Env: Real-World Perception for Embodied Agents”. Xia*, Zamir*, He*, Sax, 
Malik, Savarese. CVPR 2018. [NVIDIA Pioneering Research Award]

[1] Matterport3D,  
[2] Kinect,  
[3] Google Tango,  
[4] FARO,  [6] NavVis,  
[5] Newcombe, et al. "KinectFusion: Real-time dense surface mapping and tracking”, 2011. 
[6] Dai, A., et al. Bundlefusion: Real-time globally consistent 3d reconstruction using on-the-fly surface reintegration. ACM ToG 2017 
[7] Durrant-Whyte, H.et al. "Simultaneous localization and mapping: part I". Robotics & Automation Magazine. 2006 

https://matterport.com/
https://developer.microsoft.com/en-us/windows/kinect
https://www.youtube.com/watch?v=Qe10ExwzCqk
https://www.faro.com/
https://www.navvis.com/
http://ieeexplore.ieee.org/document/1638022/


Gibson Environment: Virtualizing Real Spaces

Virtualized
Synthetic

32

[1] Kempka, Michał, et al. "Vizdoom: A doom-based ai research platform for visual reinforcement learning." CIG 2016. 
[2] Shah, Shital, et al. "Airsim: High-fidelity visual and physical simulation for autonomous vehicles.”, Field and service robotics 2018. 
[3] Ros, German, et al. "The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes." CVPR 2016. 
[4] Dosovitskiy, Alexey, et al "CARLA: An open urban driving simulator." arXiv 2017 32
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Large Real Space Active Agent RGB Frame Stream

Gibson Environment

Subject to physics 572 full buildings. Real spaces, scanned and reconstructed in 3D. 
Browse data at: http://gibsonenv.stanford.edu/database/ 34

http://gibson.vision/database/


Large Real Space Active Agent RGB Frame Stream

Gibson Environment

Subject to physics 572 full buildings. Real spaces, scanned and reconstructed in 3D. 
Browse data at: http://gibsonenv.stanford.edu/database/ 3535

http://gibson.vision/database/


Large Real Space Active Agent RGB Frame Stream

Gibson Environment

Subject to physics Arbitrary agents can be improved using their URDF.

TurtleBot JackRabbot Quadrotor

Roboschool HumanoidRoboschool Ant Minitaur

36



Large Real Space Active Agent RGB Frame Stream

Gibson Environment

Subject to physics Integrated with physics engine, PyBullet3D. [Coumans2016]
3737



Large Real Space Active Agent RGB Frame Stream

Gibson Environment

Subject to physics Given sparse RGB-D images, renders the scene from arbitrary viewpoints.

View synthesis engine

3838



RGB Frame StreamActive AgentLarge Real Space

Additional ModalitiesSurface NormalSemantics Depth

Gibson Environment

3939



RGB Frame StreamActive AgentLarge Real Space

Additional Modalities

Gibson Environment

4040



RGB Frame StreamActive AgentLarge Real Space

Additional Modalities

Gibson Environment

4141



A. Zamir

http://gibson.vision/database/

Explore the Gibson buildings

4242



RGB Frame StreamActive AgentLarge Real Space

Subject to physics Additional Modalities

Gibson Environment at a glance
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Local planning (“go to the target”) Stair climb

Sample perceptual agents  trained in Gibson (using Reinforcement Learning) 

4444



Community follow-ups using Gibson Environment

4545



Community follow-ups using Gibson Environment

4646



Community follow-ups using Gibson Environment
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Community follow-ups using Gibson Environment

4848
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Mid-Level Vision for Robotics

50

Robust Policies via Mid-Level Visual Representations: An Experimental Study in Manipulation and Navigation. Conference on Robot Learning (CoRL) ’20.  
Learning to Navigate Using Mid-Level Visual Priors. Conference on Robot Learning (CoRL) '19 
Mid-Level Visual Representations Improve Generalization and Sample Efficiency for Learning Visuomotor Policies. (BayLearn '19)
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Setup

• “Mid-Level Visual Representations Improve Generalization and Sample Complexity for Learning Visuomotor Policies”. Sax, Emi, Zamir, Guibas, Savarese, Malik. Arxiv 2018. CoRL 2019. 
• “Robust Policies via Mid-Level Visual Representations: An Experimental Study in Manipulation and Navigation”. Chen, Sax, Pinto, Lewis, Armeni, Savarese, Zamir, Malik. CoRL 2020
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Observation

Frozen

Policy
Network

Feature Encoder
Mid-Level

Representation

Mid-Level Vision Performance on Complex Tasks

Te
st

 E
nv

 S
uc

ce
ss

 R
at

e 
(%

)

Mid-Level
Scratch

Representation

Reach Push Pick & Place Point Nav.
(Sim-to-Real)Task

4%

100% 100% 100%

70%

40%

0% 0%

Policy Action

“Tabula Rasa” (scratch) LearningVs

Tested hypothesis 1: Does mid-level vision accelerate learning? 
Tested hypothesis 2: Can mid-level features generalize better to unseen spaces?
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A. Zamir

Setup

Tested hypothesis 1: Does mid-level vision accelerate learning? 
Tested hypothesis 2: Can mid-level features generalize better to unseen spaces?

53

“Tabula Rasa” (scratch) Learning Learning with Perceptual Priors

• “Mid-Level Visual Representations Improve Generalization and Sample Complexity for Learning Visuomotor Policies”. Sax, Emi, Zamir, Guibas, Savarese, Malik. Arxiv 2018. CoRL 2019. 
• “Robust Policies via Mid-Level Visual Representations: An Experimental Study in Manipulation and Navigation”. Chen, Sax, Pinto, Lewis, Armeni, Savarese, Zamir, Malik. CoRL 2020
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Why Perceptual Priors Could Help?
Visual Feature SpaceRaw Sensory Data (pixel) Space
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Why Perceptual Priors Could Help?
Visual Feature SpaceRaw Sensory Data (pixel) Space
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Mid-Level Features
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Learning with vs without perceptual priors
Visual navigation to target object
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Train
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Blind Agent

Learning without perpetual priors does not generalize!
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Comparison with SOTA feature learning

65

[1] A. Krizhevsky, et al. “Imagenet classification with deep convolutional neural networks” NIPS 2012 
[2] S. M. A. Eslami, et al. “Neural scene representation and rendering” Science 2018 
[3] I. Higgins, et al. “DARLA: Improving Zero-Shot Transfer in Reinforcement Learning” arXiv 2017 
[4] J Munk, et al. “Learning state representation for deep actor-critic control” CDC 2016.

[5] E. Shelhamer, et al. “Loss is its own reward: Self-supervision for reinforcement learning” CoRR 2016.  
[6] P. Agrawal, et al. “Learning to poke by poking: Experiential learning of intuitive physics. CoRR 2016 . 
[7] D. Pathak, et al. ”Curiosity-driven exploration by self-supervised prediction.” CoRR 2017 
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Navigation
Feature r p-val
Obj. Cls. 5.91 .001

Sem. Segm. 5.87 .001
Curvature 4.75 .002
Scene Cls. 3.07 .003

2.5D Segm. 3.01 .002
2D Segm. 1.99 .003
Distance 1.74 .003

Occ. Edges .38 .009
Vanish. Pts. .39 .019
Reshading .21 .021
2D Edges .12 .006
Normals -.50 .035
Jigsaw -.86 .122

3D Keypts. -1.08 .112
Layout -1.14 .057

Autoenc. -1.16 .043
Rand. Proj. -2.12 .083

Blind -3.20 .755
Pix-as-state -4.30 .856
2D Keypts. -6.10 .922
In-painting -6.57 .971
Denoising -6.47 .981

Exploration
Feature r p-val
Distance 5.90 .015

Reshading 5.79 .003
3D Keypts. 5.27 .004
Curvature 5.12 .027

2.5D Segm. 5.60 .056
Layout 4.78 .108

2D Edges 4.87 .120
Normals 5.26 .143

Scene Cls. 4.67 .152
Obj. Cls. 4.80 .187
2D Segm. 4.47 .406

Jigsaw 4.47 .455
Rand. Proj. 4.33 .500
Vanish. Pts. 4.24 .500
Pix-as-state 4.20 .531

Blind 4.21 .545
2D Keypts. 4.21 .682
In-painting 4.30 .697
Autoenc. 4.11 .815

Sem. Segm. 3.67 .857
Occ. Edges 3.85 .864
Denoising 3.59 .962

Local Planning
Feature r p-val

3D Keypts. 15.45 .015
Normals 15.10 .000

Curvature 14.84 .003
Distance 14.56 .001

2.5D Segm. 14.50 .001
Sem. Segm. 14.49 .000
Scene Cls. 14.20 .001
Occ. Edges 14.20 .001
Reshading 14.12 .000

Layout 14.12 .015
Obj. Cls. 13.95 .000
2D Segm. 13.86 .001
Denoising 13.54 .000
In-painting 13.28 .000

Jigsaw 13.17 .012
2D Edges 13.16 .008

Vanish. Pts. 12.14 .028
2D Keypts. 11.99 .050
Autoenc. 11.39 .155

Pix-as-state 10.22 .654
Rand. Proj. 8.93 .892

Blind 9.83 .929

Figure 7. Features vs. scratch. The plots above show training and test performance of scratch vs. some selected features throughout training. For all tasks
there is a significant gap between train/test performance for scratch, and a much smaller one for the best feature. The tables above show significance tests of
the performance of feature-based agents vs from scratch in Gibson. P-values come from a Wilcoxon rank sum test, adjusted for multiple hypothesis testing
with a FDR of 20%. Significant rows are in white, and these blocks are ordered by average episode reward. The plots show training and testing curves, and
there are significant gaps between them. Scratch often fails to generalize (bottom), while feature-based agents generalize better (top). Sometimes, models
may appear to learn in the training environment, but they fail at test time—underscoring the importance of a good test environment in RL.

except that this network is randomly initialized and then
frozen. As a result, the policy network learns from a ran-
dom nonlinear projection of the input image. These features
contain much of the information in the original image.

Pixels as State: This baseline considers the possibility
that the small representations size is easier to learn from.
Pixels-as-state downsamples the input image to a 16x16x3
image and then stacks two of these and two other copies of
the greyscale version to produce a 16x16x8 tensor; that is
the same shape as the pretrained activations. This tensor is
then passed as the representation.

4.4. Experimental results on hypothesis testing I-III
We report our findings for the effect of intermediate rep-

resentations on sample efficiency and generalization. All
the results are evaluated in the test environment with multi-
ple random seeds, unless otherwise explicitly stated.

4.4.1 Hypothesis I: Sample Complexity Results

In this experiment we check whether an agent can learn
faster using pretrained visual features than it would be able
to learn from scratch. We evaluate 20 different features
against the four control groups on each of our tasks: vi-
sual target-driven local navigation, visual exploration, and
local planning. As shown in Fig. 6, we find that in all cases
feature-based the agents learn significantly faster and may

achieve a higher final performance than an agent that learns
from scratch, even after averaging over many random seeds.
We explore when an agent may not achieve higher test per-
formance in section 4.6.

4.4.2 Hypothesis II: Generalization Results

Do policies trained with pretrained features generalize bet-
ter to unseen test environment? The previous experiment
tested how quickly learning saturated, but this experiment
tests for superior generalization performance with a given
level of data. We find that specific feature-based policies
exhibit superior generalization performance compared to
scratch when tested in environments unseen at training time.

Generalization Significance Analysis: As shown in
Fig. 7, we find that for each of the tasks there are some
features that generalize significantly better than scratch. We
used a nonparametric significance test and adjusted for mul-
tiple comparison, using a False Discovery Rate of 20%.
If there were no actual difference, the probability of all
of these results being spurious is < 0.002 for exploration
(fig. 7, center) and negligible for navigation and local plan-
ning (fig. 7: left, right). After using the additional seeds
from the follow-up experiment in the next section, the p-
value for exploration is also negligible.

Generalization Gap: We found a large generalization
gap between agent performance in the training vs. test
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Interactive Webpage
https://perceptual.actor/policy_explorer/
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Generalization to real world
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• “Robust Policies via Mid-Level Visual Representations: An Experimental Study in Manipulation and Navigation”. Chen, Sax, Pinto, Lewis, Armeni, Savarese, Zamir, Malik. CoRL20. 
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Generalization to Real-World
Training in Gibson

(task: find the orange target and navigate to it)
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• “Robust Policies via Mid-Level Visual Representations: An Experimental Study in Manipulation and Navigation”. Chen, Sax, Pinto, Lewis, Armeni, Savarese, Zamir, Malik. CoRL20. 
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Training in Gibson

(task: find the orange target and navigate to it)
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Generalization to Real-World

• “Robust Policies via Mid-Level Visual Representations: An Experimental Study in Manipulation and Navigation”. Chen, Sax, Pinto, Lewis, Armeni, Savarese, Zamir, Malik. CoRL20. 
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• “Robust Policies via Mid-Level Visual Representations: An Experimental Study in Manipulation and Navigation”. Chen, Sax, Pinto, Lewis, Armeni, Savarese, Zamir, Malik. CoRL20. 

Training in Gibson Testing on Real Robots

(task: find the orange target and navigate to it)
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Generalization to Real-World

http://perceptual.actor/
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Mid-Level Vision for Manipulation 

With Mid-Level 
Representations

  
Pick Red Object and  

Place at Green Sphere
Without Mid-Level 

Representations

Train Test Environment (new texture, new object, etc)

Novel Texture Novel Object

Using Domain 
Randomization
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• “Robust Policies via Mid-Level Visual Representations: An Experimental Study in Manipulation and Navigation”. Chen, Sax, Pinto, Lewis, Armeni, Savarese, Zamir, Malik. CoRL20. 
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▪ (1) visual navigation 
▪ (2) rearrangement 
▪ (3) embodied vision-and-language

Common Tasks 
(2023)
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Retrospectives on the Embodied AI Workshop, Deitke et al., 2022
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Robot Learning with Sensorimotor Pre-training, Radosavovic, Shi, Fu, Goldberg, Darrell, Malik. 2023 
Real-World Robot Learning with Masked Visual Pre-training, Radosavovic, Xiao, James, Abbeel, Malik, Darrell. CoRL 2022 
Masked Visual Pre-training for Motor Control, Xiao, Radosavovic, Darrell, Malik. ArXiv 2022 
MultiMAE: Multi-Modal Multi-Task Masked Autoencoders, Bachmann, Mizrahi, Atanov, Zamir. ECCV 2022

Multi-modal learning → Motor Control
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RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control, 2023. 
PaLM-E: An Embodied Multimodal Language Model, 2023. 

Multi-modal learning → Motor Control
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LLMs in robotics 
pipelines
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RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control, Google, 2023.
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Questions?

https://vilab.epfl.ch/  
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